If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+12x-57=0
a = 5; b = 12; c = -57;
Δ = b2-4ac
Δ = 122-4·5·(-57)
Δ = 1284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1284}=\sqrt{4*321}=\sqrt{4}*\sqrt{321}=2\sqrt{321}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{321}}{2*5}=\frac{-12-2\sqrt{321}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{321}}{2*5}=\frac{-12+2\sqrt{321}}{10} $
| -13-6n=7+4n | | (3x-8)+(x)=180 | | 3u+5u=18u | | x+(9x-9)^0.5=-1 | | x+(9x-9)^0.5=3 | | 7c=9-3c | | 8(x/2-3)=16 | | 2x+6×(x-2)=0 | | 5y+1/3=7 | | 0.04(2r-1)-0.03(2r-5)=0.29 | | y/(1.2*3.7)-4.5=19.5 | | (y/(1.2*3.7))-4.5=19.5 | | 4^x+3-4^x=63 | | -2x²+2x-5=-5x | | a+4=0 | | 3x/2+4/2=-1 | | n^2-20n+39=0 | | x3+2=x4+3 | | Y/(1.2x3.7)-4.5=19.5 | | 2n+2n=500n | | (2x+19)+8=5x | | Y=8/5x+5 | | 7(7z+10)=9(5z+10) | | 4x²=-2x²+5x-4 | | -3=(3x-10) | | 3(2x-5=9(10-x) | | 70-4x=28+2x | | 5(p-1)=3p+7 | | 49z^2-56z+16=0 | | 2(4d-8)=0 | | (x-8)(2x+10)=0 | | (x-8)(2x+10=0 |